
Running head: COMPARING AES TRAINING MODELS 1 

 

 

 

A Comparison of Training Models on the Accuracy of Automated Essay Scoring Systems 

AP Research 

May 2020 

Word Count: 5482 

 

 

 

  



COMPARING AES TRAINING MODELS 2 

Abstract 

The field of automated essay scoring (AES) attempts to create a machine learning model 

which understands the various qualities of essay writing. The performance of such models 

significantly varies between datasets and architectural approaches. In this paper, several 

approaches are applied to a diverse set of essay samples to explore state-of-the-art methods and 

assess the impact of various choices on system performance. Code for this project is publicly 

available at https://github.com/davidheineman/comparisonaes. 

Keywords:  automated essay scoring, applied neural networks, natural language 

processing, feature engineering, machine learning 
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A Comparison of Training Models on the Accuracy of Artificial Essay Scoring Systems 

Introduction 

With greater demand for essay scoring over recent years, reliable grading has become a 

focus for scoring agencies (Taghipour & Ng, 2016). An automated alternative would provide 

additional resources to a labor intensive and tedious task and alleviate time constraints resulting 

in faster, more accurate grading. Automated Essay Scoring (AES) applies natural language 

processing and computational modeling to accept an essay as input and assign it a numerical 

score. The system reflects on the quality, content, organization and grammar of an essay to best 

mimic a model grader. Such a scoring ability would expedite essay grading and minimize human 

involvement in the entire process. AES may also allow for detailed and targeted feedback to 

identify strong and weak points within students’ writing (Zesch et al., 2015). AES systems 

consist of two key components: a preprocessor, which prepares input data and a training model 

which creates a system to assign scores. This paper will compare novel training models and their 

ability to score essays across standardized conditions. 

Review of Literature 

This portion evaluates current research on feature selection methods, current training 

methods and concerns within the field. It will conclude with a discussion of the dataset used in 

this project and the role of this paper. 

Feature Selection Methods 

Feature selection, which is the grooming of data to use as input into the training model, 

exploits quantifiable measures of an essay that correlate with a high score to synthesize input 

data. Feature-based AES systems convert each essay into a set of numbers which represent the 

syntactic and stylistic features of an essay, known as an essay vector. Systems which accept an 
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essay vector as input are known as supervised learning models and make up traditional AES 

models. Supervised learning requires meaningful features to assign scores accurately, thus 

significant research has been published on various feature-selection methods.  

The simplest features are statistical metrics, such as word count or sentence length. These 

counts may be synthesized into high-level features like readability and word-to-sentence ratios 

(Zesch et al., 2015). Beyond statistical features, low-level features1 have been developed to 

measure more abstract concepts such as lexical complexity or writing level. Scores for these 

metrics are created by analyzing the pairs of two, three or four words in each text, known as n-

grams2 (Chen & He, 2013). Various high-level syntactical features, which score the organization 

and flow of ideas, have also been proposed (Farra, 2015). Diction-based (or linguistic) features, 

in particular, have been a staple for supervised systems, most using Latent Semantic Analysis to 

find a lexical similarity between essays (Klebanov & Flor, 2013). Using n-grams to calculate 

semantic similarity has been used beyond comparing words within essays to comparing the 

similarity of essays to their prompt (Farag et al., 2018) and to hand-picked high, medium and 

low scoring examples (Klebanov & Flor, 2013). Text coherence has also shown to be a key 

feature of AES development and can be calculated by avoiding semantic similarity and analyzing 

changes in tone and organizational elements instead (Somasundaran et al., 2014).  

More complex features see less implementation across academic writing. Numerous 

features aimed at specific prompt types, such as persuasive or research papers, provide a more 

precise analysis of complex essays (Persing & Ng, 2015). Some even use a student’s test scores 

and performance on other test sections as a feature (Crossley et al., 2015). These task-dependent 

 
1 “Low-level” features analyze individual phrases and sentences independently, as opposed to “high-

level” features which reflect on the entire essay at once. 
2 n represents the number of neighboring terms taken. Tri-grams (n = 3) are exclusively used in this paper. 
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features are more effective when aimed towards specific types of prompts (Zesch et al.. 2015) 

and are beyond the scope of this paper. 

The above feature-preprocessing step is utilized in order to assign a set of values, known 

as an essay vector, which correlate the quantifiable elements of an essay with its score. A minor 

change in the pre-processing step can drastically change the output performance of any training 

model, which makes isolating how training models compare among papers a difficult task, given 

that these papers draw from varying datasets and feature-selection models. Additionally, hand-

crafted features are complicated to create, and thus parsers and pre-built semantic analyzers are 

often a necessary part of the preprocessing step, often using systems not built for AES, rendering 

them unreliable in practice (Alikaniotis et al., 2016). Hand-crafted features, despite being 

accurate correlations of essay score, do not capture the full nuances of grading essays, and the 

process of understanding an essay is too involved to be completely considered by such features. 

Similarly, linguistic features require time consuming, manual identification of high-scoring 

sample essays (Klebanov & Flor, 2013). Feature engineering is also the most involved and 

difficult part of building a feature-based AES, meaning that a system that works for one dataset 

may not be easily transferable because of the nature of that dataset’s hand-crafted features.  

Despite these obstacles, feature-based AES systems are the dominant commercial option 

for testing agencies. The most popular commercial AES product, e-rater, relies on shallow 

feature-selection and has been used in various high-stakes assessments (Attali & Burnstein, 

2006). 

Unsupervised Learning Models 

With the drawbacks of feature-based models, recent papers have increasingly turn 

towards unsupervised neural networks, since this approach removes the need for feature-
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selection altogether. Unsupervised training models are defined in an end-to-end space 

representation, instead of accepting an essay vector which reflects the essay’s features, they 

accept the essay itself, so are theoretically able to capture complex concepts and abstract ideas 

that would be overlooked by feature-based models. The dense and nuanced nature of 

unsupervised learning allows a model to be capable of extracting insights that are significantly 

more difficult to quantify through a hand-crafted feature, seeing as the model identifies these 

features itself (Chelba et al., 2013). Additionally, neural models appeal to AES applications 

because of their “end-to-end” nature, meaning they can be easily trained on a new corpus without 

the need to change the model architecture or create customized hand-crafted features.  

In AES, unsupervised models use a word embedding to convert the words of each essay 

to a dense numerical representation which encapsulates the meaning of each word and its 

relationship to others, known as a word vector (Pennington et al., 2014). The series of word 

vectors which create each essay serves at the input to the unsupervised model. Various papers 

create word vectors using publicly available word embeddings trained on generic corpuses (such 

as word2vec, etc.) (Wang et al., 2018) but others have proposed training a custom word 

embedding on the essay inputs themselves, creating a Score-Specific Word Embedding (SSWE) 

(Alikaniotis, 2016). SSWEs, because of specialization towards each corpus, have shown to 

improve scores on baseline neural networks (Nguyen et al., 2016). The first major unsupervised 

AES utilized a Long Short-Term Memory network, (LSTM) (Hochreiter & Schmidhuber, 1997) 

proposed specifically for its ability to recall information, which allowed the model to develop an 

understanding of the topic. The LSTM model did not outperform state-of-the-art feature-based 

models but did when using a SSWE to create the input (Nguyen et al., 2016). A two-layer 

Convolutional Neural Network (CNN) has been proposed with an ability to encode each essay in 
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two independent ways (Dong & Zhang, 2016). The first layer used each word as input, allowing 

the network to analyze low-level features like diction and grammar. The second utilized string 

kernels to encode each essay, allowing the network to analyze syntax, organization and 

development of ideas. Variations of a two-layer CNN have shown to slightly improve scoring 

accuracy, one adding another Recursive Neural Network (RNN) to incorporate the benefits of 

low-level and high-level scoring (Taghipour & Ng, 2016). Instead of embedding the essay, 

another approach is to apply hierarchical classification, which utilizes both an essay vector and a 

feature set as additional input, allowing for features to contribute to a neural model (McNamara 

et al., 2015 & Yannakoudakis et al., 2011).  

The central theme of AES research has shifted from applying supervised to applying 

unsupervised training models to various datasets. However, neural networks, due to their end-to-

end nature, are nebulous and fail to provide insight into grading decisions. The benefit to feature-

based models is their ability to provide detailed feedback as to why a score is awarded 

(Alikaniotis et al., 2016). 

The Importance of Dataset Standardization 

Comparing training models between AES research is difficult because various models 

might have different feature-selection methods, embedding methods or datasets altogether. For 

example, longer papers whose grades focus on abstract ideas rather than writing quality are 

significantly more difficult for an AES to score (Yang et al., 2018). Not only does a dataset effect 

AES performance, but the wide variety of feature selection methods and embedding techniques 

used between AES studies make comparative analysis of training models difficult (Zesch, 2015). 

In 2012, the “Automated Student Assessment Prize,” (ASAP) funded by the Hewlett foundation, 

provided detailed training data which has been used by multiple AES studies. The dataset 
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consists of twenty-thousand pre-scored essays under eight different prompts which vary in topic, 

complexity and style. This dataset will allow for comparative analysis of the effects of prompt 

type on model performance. The purpose of this paper is to compare a diverse set of feature-

based and neural-based training models on a standard feature-set, embedding technique and 

dataset. 

Methodology 

In this section, the reasoning and assembly for the preprocessor, models and training 

metric will be introduced. It will conclude with an explanation of the evaluation metric and a 

discussion of the dataset.  

Feature Selection 

For supervised AES models, feature inputs can be categorized into four types: 

Grammatical, semantic, content and synthetic features. This section will briefly introduce each 

type and explain how each were determined. An enumerated list of features and dependencies 

utilized to determine each feature are included in Appendix A. 

Grammatical Features 

The preprocessor begins by correcting the grammar of individual words against an open-

source English corpus. The number of incorrectly spelled words was stored, and the corrected 

essay, due to its ability to better demonstrate content, was used as the input for all other features. 

Semantic Features 

Statistical metrics, which broadly refer to various counts of lexical features, were also 

calculated. Essays were tokenized into words and sentences, which allowed simple character, 

word and sentence counts, as well as for counting the lengths for each word, sentence and 

paragraph. The frequency of each type of punctuation and Part of Speech (POS) tags are also 
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counted. A Name Entity Recognizer (NER) was used to identify unique nouns and their type. 

Before continuing, stop words, given by a generic set of 50 commonly used words, were 

identified and removed before other features were implemented to make the following 

substantive features more representative of meaningful verbiage. Additionally, all tokens (words 

not included in the stop word corpus) were counted. Each token is scored against a generic 

corpus and combined to quantify the essay’s writing level. The average difficulty of words is 

stored as a feature. Tokens are also used to find the Kincaid readability score, a metric commonly 

used in AES, given by: 

𝑟 = 206.835 − 1.015
|𝑡|

|𝑠|
− 84.6

|𝑠𝑦𝑙|

|𝑡|
 

Where |𝑡|, |𝑠|, |𝑠𝑦𝑙| represent the number of tokens, sentences and syllables respectively. 

Additionally, various other reading scores were included for comparison. 

Content Features 

The frequency of unique terms used in one essay (Term Frequency) multiplied by the 

inverse of the frequency of that term used among the set of essays (Document Frequency), gives 

a Term Frequency-Inverse Document Frequency (TF-IDF) matrix which quantifies the 

importance of every word within one essay, given how each word is used among the set of 

essays. A TF-IDF matrix is generated for each set of essays and for each individual essay. The 

process of Latent Semantic Analysis (LSA) then utilizes both TF-IDF matrices to calculate a 

vector representation for each essay. Using these vector representations, a cosine distance may be 

found which can quantify the relationship between any two essays. For each set of essays, a high, 

medium and low scoring essay, which accurately represented the topic, was hand-picked. Using 

LSA, a similarity is calculated given cosine distance of their vector representations provided by 
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the TF-IDF matrix. Additionally, the LSA similarity is calculated between the essays and the 

verbiage used in their respective prompt. 

Synthetic Features 

Synthetic features, a function of two or more features, were calculated to add insight into 

the relationship between basic features. The average word length (the ratio of total characters to 

total words), type-token ratio (the ratio of unique tokens to total tokens) and lexical diversity (the 

ratio of name entities to tokens) are notable examples, but for the sake of brevity the full list of 

synthetic features can be found in Appendix A. 

Supervised Model Implementation 

Before feeding the preprocessed features into each model, the features were converted to 

a standard scale dictated by their z-score. Each supervised model was implemented using the 

Scikit-learn framework, various out-of-the-box functions were used to fit each supervised model. 

To find the optimal conditions, hyperparameter tuning was performed for each model using Grid 

Search. As a baseline, a simple Linear Regression is applied which finds the most representative 

linear relationship between the feature data and the score.3 

Support Vector Machine 

The Support Vector Machine (SVM) is an alternative to the regressor Support Vector 

Regression which is adapted for classification-based learning (Vapnik et al., 1996). The SVM 

attempts to maximize the margin between each of an essay’s features by generating a function. 

Unlike a linear regression, the SVM is adaptable to a non-linear feature space, which is useful for 

AES features that typically have a non-linear distribution. Additionally, the SVM is more suited 

than the baseline for high-dimensional features because of its simplicity in generating higher-

 
3 As an additional baseline, an ElasticNet is trained, which is similar to a linear regression, but includes 

L1 and L2 regularization methods to prevent overfitting. 
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dimensional regressions. To take advantage of the ability for a SVM to efficiently separate high-

dimensional data, a Radial-Basis Function (RBF) kernel is applied which generates trivial 

synthetic features to scale inputs into higher dimensions. 

Random Forest Ensemble 

The Random Forest Ensemble consists of numerous, independently trained Decision 

Trees which act as several nodes to collectively contribute to a final score. Each decision tree is 

randomly initialized and trained on a subset of the given training data to generate a rudimentary 

set of rules (known as decision boundaries) which separate points within the feature space. 

During evaluation, the distance between a tree’s decision boundaries and prediction is used to 

output confidence in its decision. The total of each node’s prediction, weighted by its confidence, 

outputs the singular score for the Random Forest Ensemble. The Classification and Regression 

Tree (CART) method is used to train the decision trees (Lewis, 2000). 

k-Nearest Neighbor 

The k-Nearest Neighbor (kNN) attempts to separate essays indiscriminately into 

categories and assign class labels once evaluation on the dataset has finished. The most common 

score of the 𝑘 closest neighbors of the training data is used to assign scores to new input data, 

weighted by the distance of each neighbor. 

Unsupervised Model Implementation 

 This section will propose a framework from which all unsupervised models are 

assembled. Figure 1 depicts the overall architecture for a generic unsupervised model. In testing, 

the embedding and activation layer are applied to all unsupervised models, but the layers which 

generate the essay representations vary between the models tested. 

  



COMPARING AES TRAINING MODELS 14 

Figure 1 

Illustration of unsupervised learning network architecture. 

 

Embedding Layer 

 The high-dimensional dense word vector representation is generated from the publicly 

available Global Vector (GloVe) dataset, retrained on each prompt to create a SSWE. Each essay 

is then converted to a dense embedding representation defined by 𝐸 ∈ ℝ𝑁×𝐿 where 𝑁 is the 

embedding dimensionality and 𝐿 is the average word length of the essay samples. Higher-

dimensional embeddings theoretically store more information about each word (Pennington et 

al., 2014), so different dimensionalities are tested. The final embedding table 𝐿 is given by: 

𝐿 = (𝐸𝑤1, 𝐸𝑤2, … , 𝐸𝑤𝑛) 

Where 𝑤𝑛 is a one-hot identifier for each word and 𝐸 is the trained SSWE embedding matrix. 
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Convolutional Neural Network (CNN) 

The convolutional layer has traditionally been used in image recognition and has shown 

effectivity in condensing representations of long groups of text. Each group of word 

representations are combined into 𝑛-grams and are pooled to create higher-level features. 

Theoretically, the layer synthesizes local features between pairs of words to generate a broader 

representation of the text. This makes it effective at capturing features stored in the essay’s 𝑛-

grams. Each 𝑛-gram embedding representation is concatenated to form 𝑥̃, where 𝑛 is the window 

size. The 𝑥̃ representation has dimensionality 𝑥̃ ∈ ℝ𝑁×𝐿, where 𝐿 is the total dimensionality of all 

combined embeddings. The output from the convolutional layer is given by: 

𝐶𝑜𝑛𝑣(𝑥) = 𝑊𝑥̃𝑥̃ + 𝑏𝑥̃ 

 Where 𝑊𝑥̃ and 𝑏𝑥̃ are a trainable weight and bias which apply to the overall layer. The 

convolutional layer can be applied both independently and alongside a recursional layer, both 

tested in this paper.  

Recursive Layers 

A recursive neural network (RNN) applies a series of directional transformations to 

generate a collapsed representation of the essay. They apply a transformation to each word within 

the essay independently.4 Due to their directional nature, they are capable of scaling to large 

lengths of text, which has made RNNs a staple of Natural Language Processing and AES, whose 

input typically involves long sequences and variable lengths of text. The recursive layer can 

accept either a series of embeddings or a convolutional representation of an essay as input. Two 

basic recursional layers are tested, a traditional RNN and a Gated Recursional Unit (GRU) 

network, with the GRU including a basic trainable output transformation. 

 
4 Each independent transformation is known as a timestep. The number of timesteps equals 𝐿. 
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Long Short-Term Memory Network (LSTM): The LSTM is a modified recursional 

layer which stores information during each step of evaluation to expand the capability of 

understanding long sequences of text. In training, the LSTM learns to strengthen or forget certain 

insights from the text which are incorporated in later representations (Hochreiter & 

Schmidhuber, 1997). The LSTM provides an output after each word is individually incorporated 

within the model. The following equations formally structure the LSTM: 

𝑖𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑓𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑐̃𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑖𝑡 ∘ 𝑐̃𝑡 + 𝑓𝑡 ∘ 𝑐𝑡−1 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡) 

Where 𝑥𝑡 is each input vector and ℎ𝑡 is the processed representation at timestep 𝑡. With 𝑊𝑖,

𝑊𝑓 ,𝑊𝑐,𝑊𝑜 , 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑐, 𝑈𝑜 and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜 being trainable weight and bias variables respectively. 

∘, 𝜎, tanh() represent the Hamdard product, sigmoid function and hyperbolic tangent function 

respectively. 

Bi-Directional LSTM: The LSTM processes essays in a left-to-right method, accepting 

the first input vector and processing its representation before being exposed to the next word. 

Thus, words that change the meaning of a sentence may be completely ignored by the LSTM 

because of its left-to-right nature. Thus, another essay representation can be generated with an 

equivalent LSTM processing the word vectors in a right-to-left method. The BLSTM generates 

two processed outputs, ℎ⃗ 𝑡 and ℎ⃗⃗⃖𝑡.  



COMPARING AES TRAINING MODELS 17 

Mean over Time: The output from any recursional layer is a final, learned essay vector 

calculated from the entire input. However, because the vector generated at each timestep by the 

respective transformations of each recursive gate can encode relevant information about the final 

score, the vector at each timestep is stored (Taghipour & Ng, 2016). Thus, an average pool of all 

timesteps is found by applying a Mean over Time (𝑀𝑜𝑇) function given by: 

𝑀𝑜𝑇(ℋ) =
1

𝑁
∑ℎ𝑡

𝑁

𝑡=1

 

Where ℋ = (ℎ1, ℎ2, … , ℎ𝑀) are the intermediate timesteps given by the recursional layer. For 

vectors processed through the Bi-Directional LSTM, both outputs are separately passed through 

the 𝑀𝑜𝑇 layer and concatenated into a singular representation given by: 

ℋ̃ = 𝑊ℋ̃ (
𝑀𝑜𝑇(ℋ⃗⃗ )

𝑀𝑜𝑇(ℋ⃗⃗⃖)
) + 𝑏ℋ̃ 

Where 𝑊ℋ̃ and 𝑏ℋ̃  are trainable parameters.  

Feed-Forward Activation Layer 

 Although it is possible to bypass the 𝑀𝑜𝑇 layer and accept only the final state ℎ𝑡, for any 

model, the network is more accurate by using the average state (Taghipour & Ng, 2016). Finally, 

the 𝑀𝑜𝑇 state is passed through a fully connected hidden layer, which collapses the high-

dimensional input into a singular representation. Each hidden layer is defined as: 

ℎ𝑜𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝑊ℎ(𝑚1,𝑚2, … ,𝑚𝑛)) + 𝑏𝑜𝑢𝑡 

With 𝑅𝑒𝐿𝑈 representing the non-linear Rectified Linear Unit activation function and 𝑚𝑡 being 

the final 𝑀𝑜𝑇 representation of each word. The feed-forward output is not constrained to a range, 

so a simple activation layer must be used to bound the output to a range [0,1]. The final score is 

given by: 
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𝑦̃ = 𝜎(𝑊𝑦̃ℎ𝑜𝑢𝑡 + 𝑏𝑦̃) 

Where 𝑊𝑦̃ and 𝑏𝑦̃ are trainable parameters and 𝜎 represents the sigmoid activation function. In 

this case the bias 𝑏𝑦̃ is set to the mean gold-standard (or human-graded) score of all samples, 

which has proven helpful for aligning scores within the prompt range (Tay et al., 2017). During 

training no other operations are performed, but in evaluation the output is normalized to the 

range of scores. 

Optimization 

The optimization function Adam is used to minimize loss due to its simplicity, 

effectiveness and reliability on complicated networks (Kingma & Ba, 2014). Backpropagation 

adjusts all trainable variables in layers up to the embedding layer. All models are evaluated using 

a 5-fold cross evaluation which averages the performance to normalize the random varying 

ability of each model. The final hyperparameters for all unsupervised models are included in 

Appendix B.  

Evaluation Metrics 

Training: Mean Squared Error 

 Within training, each model attempts to minimize the Mean Squared Error (MSE) to 

generate the least square model. After the MSE ceases to increase after 5 consecutive training 

periods, the instance with the lowest MSE on a separate essay set (the validation set) is selected 

as the final model. The MSE is given by: 

𝑀𝑆𝐸(𝑦, 𝑦̃) =
1

𝑁
∑(𝑦𝑖 − 𝑦̃𝑖)

2

𝑁

𝑖=1
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With 𝑁 number of essays, 𝑦̃ prediction score generated by the AES system and 𝑦 gold-standard 

score. The difference is squared and averaged to incorporate all training data and weigh 

inaccurate scores parabolically. 

Evaluation: Quadratic Weighted Kappa 

 Quadratic Weighted Kappa (QWK) is a metric exclusively used for AES studies and was 

popularized through the ASAP competition (Shermis, 2012). Due to its synonymy among 

research, it is used as the evaluation metric to compare models. QWK scores range from [−1,1], 

with 1 being perfectly and 0 being randomly agreeable. The QWK evaluation begins with a 

𝑁-𝑏𝑦-𝑁 matrix 𝑊𝑖𝑗 which represents a weight matrix where each value corresponds to the 

percentage of scores that fall under each combination of scores: 

𝑊𝑖𝑗 =
(𝑖 − 𝑗)2

(𝑁 − 1)2
 

Where 𝑖, 𝑗, and 𝑁 are the gold-standard scores, AES prediction and total number of essays 

respectively. Additionally, a 𝑁-𝑏𝑦-𝑁 matrix 𝑂𝑖𝑗 is constructed corresponding to the number of 

gold-standard and prediction scores respectively. Another 𝑁-𝑏𝑦-𝑁 matrix, 𝐸𝑖𝑗 is calculated as the 

product of the histogram vectors of both scores. 𝐸 and 𝑂 then are normalized to output the same 

sum. All matrices are used to calculate the final QWK score: 

𝜅 = 1 −
∑ 𝑊𝑖𝑗𝑂𝑖𝑗𝑖,𝑗

∑ 𝑊𝑖𝑗𝐸𝑖𝑗𝑖,𝑗
 

Dataset 

The data for this paper is provided by the Hewlett Foundation Automated Student 

Assessment Prize (ASAP) contest, a public competition aimed at designing the best performing 

AES system. Essays within the dataset have been altered to censor personal information using 

the Stanford NER, so the NER implemented in the preprocessing step was altered to identify the  
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Table 1 

Description of ASAP Dataset 

Essay Set Training Size Score Range Grade Level Essay Type Avg. Length 

1 1783 2-12 8 Narrative 350 

2 1800 1-6 10 Narrative 350 

3 1726 0-3 10 Source-Based 150 

4 1772 0-3 10 Source-Based 150 

5 1805 0-4 8 Source-Based 150 

6 1800 0-4 10 Source-Based 150 

7 1569 0-30 7 Expository 250 

8 723 0-60 10 Expository 650 

censored information. From the ASAP data, only the input essay and final score was used to train 

and evaluate each model. Additionally, the data includes human-based scores for each essay, 

which allows for measuring machine-human and inter-human agreement. Table 1 summarizes the 

ASAP dataset. 

During evaluation, the dataset was split randomly into the ratio: 70% training set, 15% 

validation set and 15% test set. The models were trained on the training set chosen by the 

minimum loss on the validation set and the final QWK score was calculated using the test set. 

The same split of data was used as input to every model evaluated in the project. All models 

were developed in Jupyter Notebooks using Python 3.7, with supervised models evaluated using 

out-of-the-box Skikit-Learn functions and unsupervised models evaluated using Keras and 

Tensorflow 2. Training was performed using a Nvidia GTX 1060 and Intel Core i7-7700. 

Findings & Discussion 

This section evaluates individual findings as directed by the methodology and explores 

independent variables’ effect on model performance. Table 2 illustrates the QWK scores for both 

supervised and unsupervised models among each of the eight prompts, and the average score 

among all prompts. The 5-fold cross evaluation scores are shown, with each value being the  
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Table 2 

QWK scores for supervised and unsupervised models organized by prompt. “Avg.” denotes a 

simple average of QWK scores among all prompts 

 1 2 3 4 5 6 7 8 Avg. 

Forest Ensemble 0.826 0.683 0.618 0.696 0.784 0.683 0.740 0.678 0.713 

Elastic Network 0.819 0.673 0.643 0.699 0.779 0.663 0.739 0.717 0.717 

Linear Regression 0.796 0.653 0.610 0.735 0.741 0.650 0.676 0.617 0.685 

kNN Classifier 0.800 0.628 0.669 0.701 0.780 0.637 0.651 0.473 0.667 

SVM 0.646 0.605 0.649 0.676 0.747 0.602 0.623 0.479 0.628 

BLSTM 0.820 0.635 0.663 0.801 0.770 0.791 0.747 0.651 0.735 

BLSTM-CNN 0.830 0.652 0.645 0.762 0.762 0.789 0.743 0.625 0.726 

CNN 0.757 0.636 0.644 0.787 0.778 0.779 0.765 0.638 0.723 

LSTM 0.789 0.542 0.627 0.773 0.775 0.781 0.753 0.567 0.701 

LSTM-CNN 0.724 0.510 0.620 0.755 0.762 0.780 0.716 0.532 0.675 

RNN-CNN 0.506 0.445 0.574 0.629 0.557 0.650 0.631 0.499 0.561 

RNN 0.332 0.506 0.462 0.633 0.158 0.406 0.521 0.273 0.411 

GRU 0.125 0.228 0.125 0.301 0.080 0.334 0.403 0.265 0.233 

GRU-CNN 0.000 0.001 0.000 0.081 0.041 0.005 0.033 0.015 0.022 

average QWK score across 5 evaluations, enumerated in Appendix C. Unsupervised models with 

a “-CNN” are RNN models with an additional, optional convolutional layer which collapses the 

embedding representations before prior to processing the essay. The “CNN” model features the 

same structure as the RNN models without a recurrent layer. The highest QWK score for each 

essay is underlined, the highest for each section (supervised, unsupervised) in bold and the 

second highest italicized. The highest average QWK score was performed by the BLSTM, with 

the BLSTM-CNN and CNN models also performing higher on average than the best performing 

supervised network. The BLSTM consistently outperformed the unsupervised networks in 

Source-Based and Expository prompts (3-8), while no supervised network performed clearly 

strong among all prompts. However, the Elastic Network performed best among supervised 

networks despite only having the highest average QWK score on one prompt. The RNN, GRU 

and GRU-CNN models severely underperformed and, through further investigation, this is 
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attributed to divergence from the loss function during training, typically the drawback of an 

oversimplistic network.  

For recurrent models with the addition of a convolutional layer, change in model 

performance was inconsistent. For the BLSTM and LSTM networks, an addition of the CNN 

decreased average performance by .009 and .026 respectively, with the only improvement being 

shown by the BSLTM-CNN on narrative prompts (1-2). This is likely attributed to the additional 

architecture created by the convolutional layer, which collapses embedding information by 

combining neighboring words into a more efficient representations. For already complex 

recurrent networks, the collapsed representation likely created unnecessary noise to parse out, 

resulting in consistently lower QWK scores. However, both the BLSTM and LSTM consistently 

outperformed simpler recurrent networks (RNN & GRU) by between 0.114 and 0.713 on 

average. Long-term recurrent networks likely performed better due to their ability to retain 

information from earlier in a sequence, making them ideal for the typical length of AES input 

essays. The Bidirectional nature of the BLSTM improved performance over the LSTM by 0.051 

and 0.034 (with and without a CNN layer, respectively), which is attributed to being able to 

apply information from both the beginning and ending of sequences. 

Among prompts, model performance was most dependent on the prompts’ training size 

and grade level. Being 58% smaller than the average training set size and having the largest 

average word length, model scores on prompt 8 are consistently lower among unsupervised 

models. Additionally, prompts 1, 5 and 7, given to students on the middle school grade level, had 

higher QWK scores between models than those given to high school students (an average 

increase of 0.073). No concrete correlation was found between the type of essay given and model 
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performance. However, because each dataset varied in multiple ways, no conclusive assertions 

can be made about the impact of prompt grade level or essay length on model performance. 

Human-Machine Agreement 

Table 3 contains the QWK scores between four high-performing AES models, two 

singular human graders and the final essay score. The two models scored with the highest 

average QWK were taken from each category5. AES 1, 2, 3 and 4 denote the BLSTM, CNN, 

Forest Ensemble and Elastic Network networks, respectively. Human-machine (AES-H) 

agreement which outperforms baseline inter-human (H1-H2) agreement is denoted in bold. The 

BLSTM and Elastic Network perform significantly higher in human-machine agreement than the 

next highest accuracy model by type (by 0.088 and 0.111, respectively). In no case does the 

machine-domain (AES-D) agreement outperform human-domain (H-D) agreement; denoting 

machine performance does not match human performance on any prompt or model. However, 

high machine-human agreement, shown by the BLSTM (AES1) and Elastic Network (AES4) 

across all prompts, exemplifies an approaching similarity between AES models and human 

graders.  

  

 
5 Exempting unsupervised networks whose architecture are too similar to make substantive comparisons. 

In this case, the third highest unsupervised network, the CNN was chosen as opposed to the BLSTM-

CNN. 
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H1 H2 D AES1 AES2 AES3 AES4 

1 

H1   0.721 0.926 0.702 0.572 0.629 0.766 

H2     0.924 0.724 0.596 0.583 0.789 

D       0.832 0.720 0.663 0.855 

2 

H1   0.691 0.814 0.658 0.459 0.594 0.691 

H2     0.802 0.700 0.472 0.553 0.696 

D       0.658 0.459 0.594 0.691 

3 

H1   0.769 0.914 0.659 0.555 0.559 0.600 

H2     0.871 0.597 0.574 0.586 0.583 

D       0.697 0.600 0.588 0.617 

4 

H1   0.851 0.933 0.752 0.733 0.684 0.706 

H2     0.930 0.749 0.733 0.680 0.717 

D       0.788 0.746 0.720 0.738 

5 

H1   0.753 0.883 0.755 0.777 0.695 0.766 

H2     0.879 0.761 0.781 0.736 0.792 

D       0.782 0.783 0.740 0.808 

6 

H1   0.776 0.893 0.760 0.714 0.640 0.718 

H2     0.887 0.760 0.689 0.634 0.671 

D       0.804 0.736 0.665 0.717 

7 

H1   0.721 0.924 0.612 0.597 0.558 0.700 

H2     0.927 0.612 0.601 0.579 0.712 

D       0.750 0.730 0.622 0.780 

8 

H1   0.624 0.883 0.634 0.494 0.379 0.617 

H2     0.875 0.562 0.381 0.360 0.592 

D       0.651 0.480 0.389 0.664 

Avg. 

H1   0.738 0.896 0.692 0.613 0.592 0.696 

H2     0.887 0.683 0.603 0.589 0.694 

D       0.745 0.657 0.623 0.734 

Supervised Feature Analysis 

 To compare features, a trivial random forest regressor was trained on features from all 

datasets within the project to determine the Gini-importance of each feature. The Gini-

importance denotes the likelihood of a feature to serve as the decision boundary on one decision 

tree, or the influence a feature has on distinguishing between well and poorly written essays. 

Table 4 contains the Gini-importance and corresponding standard deviation (SD) for significant6  

 
6 “Significant” is the most influential features of each type, not of overall highest Gini-importance, chosen 

to illustrate multiple types of features because Gini-importance doesn’t necessarily indicate a “good” 

feature. 

Table 3 

Comparison of agreement 

(QWK) between high-

performance models and human 

scorers. “H1”, “H2” and “D” 

denote human grader 1 and 

human grader 2 and the domain 

score, respectively 
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features organized by type. An 

enumerated list of features, Gini-

importances, and SDs is provided in 

Appendix D. A higher Gini-

importance implies a feature with 

greater influence over the scoring 

boundary while the standard deviation 

indicates how that importance may 

vary between decision trees. Semantic 

features, which contain superficial 

information about an essay, are shown 

to be the most influential feature on 

supervised models with Gini-

importances consistently higher than 

other types. However, these features 

also have a high standard deviation, implying an interchangeability and unreliability of semantic 

features as predictors. The common AES readability metric enumerated in the method had a 

lower Gini-importance (1.43%) than the Coleman Liau and Smog readability metrics (2.34%, 

3.75%) and 7 other synthetic features. Spelling errors, the sole grammatical feature, had the 

lowest Gini-importance of all sections. 

Figure 2 displays the absolute value Pearson correlation coefficient (|𝑟|) of features 

pairings ordered by Gini-importance. A high correlation between two features signifies less 

distinguishing information for a supervised model to observe when separating essays into scores, 

Feature Gini STD 

Content 

High-Scoring Similarity 2.16% 0.36% 

Medium-Scoring Similarity 1.73% 0.30% 

Low-Scoring Similarity 1.67% 0.12% 

Polarity 1.53% 0.16% 

Subjectivity 1.43% 0.12% 

Grammatical 

No. Corrections 1.66% 0.11% 

Semantic 

Non-Stop Word Count 3.06% 2.02% 

Unique Word Count 3.03% 1.83% 

Character Count 2.86% 1.53% 

Word Count 2.73% 1.51% 

Difficult Word Count 2.55% 1.33% 

Synthetic 

Unique POS-POS Ratio 2.82% 1.87% 

Coleman Liau Score 2.34% 0.38% 

Unique Character-Character Ratio 1.80% 0.58% 

Smog Score 1.75% 0.62% 

Word-Sentence Ratio 1.74% 0.26% 

Table 4 

Gini-importance of selected features6 utilized by the 

unsupervised models and organized into categories as 

dictated by the methodology. 
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a product of two features being “too similar.” Since the direction of correlation has little impact 

on supervised model accuracy (Crossley et al., 2015), the absolute value was taken. Most 

strikingly, although semantic features had the highest Gini-importance of any type, they also 

highly correlate with each other, shown by the top 6 features semantic features which all have 

correlations |𝑟| > 0.82. For content features, high and medium scoring similarity had a 

correlation of |𝑟| = 0.76 while their correlation with the low scoring sample similarity was |𝑟| = 

0.52 and |𝑟| = 0.42, respectively. High-Gini synthetic features like the Coleman Liau score, 

Smog score and Word-Sentence ratio had low correlations with other feature types but high 

correlations with each other (|𝑟| > 0.73). 7 

 

 
7 Statistical significance was dictated by Gini-importance, ignoring category to highlight the correlation of 

commonly used decision tree boundaries. 

Figure 2 

Heatmap of the 

absolute value of 

correlations 

between selected 

features of 

statistically 

significant Gini-

importance7 (> 

0.16) 
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Limitations 

 Due to the end-to-end nature of unsupervised models and the relatively complicated 

structure of high-dimensional feature-based models, it is difficult to confidently ensure the 

qualities of good essay writing are being learned. However, through 5-fold cross evaluation and 

splitting data into separate train, test and evaluation sets, the observed performance of each 

model can be used to predict the objective performance of that model in a generic AES setting. 

Additionally, through Table 2, the similarity between trained models and human scorers can be 

observed. Although the ability to confirm whether an AES model is fully understanding writing 

quality is impossible, the paper offered approaches to reveal human-machine agreement. 

Computational complexity was not observed, due to its relative unimportance in AES and the 

simplistic nature of NLP-based models. 

Conclusion & Areas of Further Inquiry 

The researcher has evaluated novel unsupervised neural networks and traditional 

supervised feature-based models on a standard, diverse dataset and compared the impact of 

architectural decisions on model performance. The decisions of feature development and model 

structure analysis can be extrapolated to generic AES applications in expository, narrative, and 

source-based prompts. The conditions of the study included a diverse set of training data to show 

the discrepancy in model accuracy between various types of prompts, lengths, and levels of 

writing. Although the QWK results are promising across models, AES remains an inadequate 

substitute for human scoring, as shown by Table 2, and have a vast potential for improvement. 

Supervised systems have been shown to consistently rely on semantic features, with content-

based insights remaining weak in their ability to disambiguate essay quality, although these 

features have been proven consequential in model accuracy. Unsupervised systems have shown 
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to effectively process dense representations of essays to generate models with higher accuracy 

than the traditional methods despite lacking hand-crafted features.  

Although this study serves a role in collating existing AES methods, future exploration 

into state-of-the-art representative features and denser unsupervised models is needed, 

particularly in developing more effective methods in understanding essay content. For example, 

ensemble methods, which combine both supervised and unsupervised approaches to create one 

output weighted by confidence8 have yet to be introduced and would combine the insights of 

both approaches. Ensemble methods can also be used to train multiple models of the same 

architecture and pool results, leading to greater accuracy without the need for a novel approach. 

Additionally, AES research has primarily focused on models individually trained on separate 

prompts, with a major prerequisite to papers being a training size of >500 essays needed for an 

accurate model. In similar applications, researchers have tackled this problem through transfer 

learning, where a generalized unsupervised model is built which can be applied to AES situations 

through training (Bengio, 2012). Transfer learning, due to its relative novelty, has yet to be 

applied in AES, but has the potential of lowering the amount of pre-scored essays needed to 

generate an accurate model. Automated essay scoring has the ability to expedite the labor-

intensive grading process and while this study produced no novel approach, it collated existing 

methods and laid the groundwork and direction for future exploration into these systems. 

 
8 Ensemble methods are synonymous in numerous machine learning applications, including natural 

language processing (Zhang & Ma, 2012). 
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Appendix A 

Predefined features for supervised learning models categorized as dictated by the methodology. 

“Dependencies” are Python functions used to determine each feature. 

No. Feature Description Dependencies 

Content 

1-3 High-, Medium-, Low- Scoring 

Similarity 

TF-IDF similarity to hand-picked 

samples 

SpaCy NLP, 

Similarity 

4 Polarity Degree of positive/negative sentiment TextBlob 

5 Subjectivity Degree of emotional/opinionated rhetoric TextBlob 

Grammatical 

6 No. Corrections Number of corrections made by spell & 

grammar check 

LanguageTool 

Semantic 

7 Non-Stop Word Count Word count excluding commonly used 

words 

SpaCy Stop 

Words 

8 Difficult Word Count Count of "difficult" words as determined 

by the TextStat corpus 

SpaCy, 

TextStat 

9-12 Unique Word, Unique 

Character, Unique NER, 

Unique POS Tag Count 

Number of unique instances of various 

metrics 

SpaCy 

13 Common POS Count Total of 10 most common POS tags SpaCy 

14 Action Word Count Number of adjectives, nouns and verbs SpaCy 

15-27 Character, Word, Sentence, 

Noun, Adverb, Adjective, 

Determinative, Pronoun, 

Conjunction, Verb, Preposition, 

Proper Noun, Interjection 

Count 

Count of various tokenized variables & 

POS tags 

SpaCy 

28-29 Period, Comma Placement Rate of punctuation SpaCy 

30-32 Unredacted NER, Redacted 

NER, NER Count 

NER counts determined by detected 

Name Entities and Name Entities 

redacted by the dataset 

SpaCy 

33-36 No. Quotations, Questions, 

Exclamations, Punctuation 

Total punctuation SpaCy 

37-45 References to Locations, 

Persons, Organizations, Dates, 

Numbers, Percentages, Time, 

Money, Unrecognized 

Pronouns 

Total number of various redacted Name 

Entities 

SpaCy 

Synthetic 

46-53 Coleman Lieu, Smog, 

Readability, Flesch, Dale Chall, 

Kincaid, Linsear, Gunning Fog 

Score 

Various readability scores, calculated as 

a function of semantic features 

TextStat 
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No. Feature Description Dependencies 

54-63 Unique POS-POS, Unique 

Character-Character, Word-

Sentence, Unique Token-

Token, Word-Character, Word-

Difficult Word, Action Word-

Word, Unique NER-NER, 

Redacted-Unredacted NER, 

Sentence-NER Ratio 

Ratio between two semantic features, 

calculated through simple transformation 

SpaCy 
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Appendix B 

Hyperparameters used for all learning models. All hyperparameters not listed are were set to 

defaults. 

Hyperparameter Description Value 

Convolutional Layer 
  

 
Dimensionality Matches GloVe dimensionality 300  
Border Mode Ensures CNN output retains its initial length same  
Window Size Number of neighboring terms to collapse into each 

representation 

3 

Recursional Layers 
  

 
Dimensionality Matches GloVe dimensionality 300  
Dropout_W Dropout rate for input neurons 0.5  
Dropout_U Dropout rate for recurrent neurons 0.1 

Optimizer (Adam) 
  

 
Learning Rate Step size in changing variables through backpropagation 0.001  
Beta_1 Rate of decay for initial estimates 0.9  
Beta_2 Rate of decay for second-moment estimates 1  
Clipnorm Clip gradient when the L2 norm exceeds this value 10  
Clipvalue Clip gradient when its value exceeds this value 0 

Training 
  

 
Max Length Max length of an input sequence 500  
Seed Condition for network initialization 1024  
Dropout 

Probability 

Probability of each neuron being ignored during training 0.2 

 
Batch Size Number of samples in one iteration 20  
Epochs Maximum number of training batches 100  
Patience Number of subsequent epochs of no improvement needed to 

cease training 

5 
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Appendix C 

Individual QWK scores for each fold. The values in Table 2 correspond to the averages of all 

folds for one prompt as denoted by the “Avg” row.  

 
1 2 3 4 5 6 7 8 

Forest Ensemble 

Fold 1 0.842 0.691 0.637 0.696 0.780 0.718 0.773 0.649 

Fold 2 0.838 0.676 0.616 0.670 0.757 0.703 0.739 0.691 

Fold 3 0.835 0.680 0.630 0.730 0.789 0.701 0.765 0.706 

Fold 4 0.821 0.650 0.645 0.704 0.764 0.673 0.789 0.734 

Fold 5 0.835 0.680 0.641 0.739 0.786 0.671 0.757 0.729 

Avg 0.826 0.683 0.618 0.696 0.784 0.683 0.740 0.678 

Elastic Network 

Fold 1 0.833 0.624 0.629 0.723 0.782 0.670 0.784 0.710 

Fold 2 0.824 0.661 0.649 0.669 0.776 0.688 0.752 0.710 

Fold 3 0.838 0.668 0.661 0.685 0.801 0.680 0.758 0.676 

Fold 4 0.829 0.592 0.693 0.711 0.753 0.666 0.781 0.778 

Fold 5 0.816 0.618 0.665 0.722 0.780 0.659 0.744 0.740 

Avg 0.819 0.673 0.643 0.699 0.779 0.663 0.739 0.717 

Linear Regression 

Fold 1 0.775 0.631 0.604 0.673 0.750 0.680 0.691 0.653 

Fold 2 0.749 0.533 0.620 0.692 0.753 0.625 0.664 0.562 

Fold 3 0.723 0.626 0.600 0.584 0.722 0.653 0.718 0.668 

Fold 4 0.774 0.610 0.627 0.539 0.741 0.652 0.696 0.630 

Fold 5 0.760 0.620 0.601 0.682 0.738 0.641 0.610 0.572 

Avg 0.796 0.653 0.610 0.735 0.741 0.650 0.676 0.617 

k-Nearest Neighbor Classifier 

Fold 1 0.800 0.622 0.709 0.715 0.775 0.596 0.671 0.529 

Fold 2 0.799 0.641 0.650 0.684 0.790 0.630 0.660 0.316 

Fold 3 0.790 0.671 0.677 0.726 0.766 0.648 0.703 0.507 

Fold 4 0.812 0.630 0.670 0.698 0.789 0.612 0.736 0.457 

Fold 5 0.814 0.630 0.648 0.713 0.771 0.572 0.655 0.507 

Avg 0.800 0.628 0.669 0.701 0.780 0.637 0.651 0.473 

SVM 

Fold 1 0.724 0.625 0.667 0.660 0.739 0.649 0.645 0.551 

Fold 2 0.713 0.634 0.632 0.728 0.758 0.641 0.668 0.415 

Fold 3 0.692 0.571 0.642 0.680 0.733 0.657 0.656 0.478 

Fold 4 0.697 0.608 0.651 0.734 0.775 0.644 0.672 0.475 

Fold 5 0.740 0.591 0.613 0.690 0.735 0.653 0.627 0.448 

Avg 0.646 0.605 0.649 0.676 0.747 0.602 0.623 0.479 

RNN-CNN 

Fold 1 0.468 0.408 0.647 0.640 0.494 0.653 0.687 0.498 

Fold 2 0.526 0.407 0.595 0.716 0.519 0.645 0.563 0.483 

Fold 3 0.531 0.545 0.537 0.560 0.695 0.676 0.682 0.513 



COMPARING AES TRAINING MODELS 37 

 
1 2 3 4 5 6 7 8 

Fold 4 0.477 0.510 0.500 0.637 0.563 0.614 0.650 0.522 

Fold 5 0.528 0.357 0.592 0.591 0.515 0.664 0.571 0.478 

Avg 0.506 0.445 0.574 0.629 0.557 0.650 0.631 0.499 

RNN 

Fold 1 0.016 0.647 -0.010 0.702 0.771 0.022 0.234 0.102 

Fold 2 0.182 0.679 0.700 0.530 -0.012 0.130 0.669 0.010 

Fold 3 0.020 0.631 0.701 0.710 0.009 0.768 0.681 0.318 

Fold 4 0.779 0.004 0.401 0.490 0.000 0.331 0.689 0.573 

Fold 5 0.663 0.566 0.518 0.732 0.021 0.778 0.332 0.360 

Avg 0.332 0.506 0.462 0.633 0.158 0.406 0.521 0.273 

GRU 

Fold 1 0.030 0.331 0.271 0.170 0.000 0.213 0.556 0.216 

Fold 2 0.000 0.255 0.010 0.340 0.130 0.000 0.533 -0.002 

Fold 3 0.000 0.378 0.270 0.231 0.222 0.329 0.169 0.492 

Fold 4 0.593 0.176 0.073 0.494 0.000 0.498 0.285 0.360 

Fold 5 0.001 0.000 0.000 0.270 0.048 0.630 0.473 0.260 

Avg 0.125 0.228 0.125 0.301 0.080 0.334 0.403 0.265 

GRU-CNN 

Fold 1 0.000 0.000 0.000 0.179 0.000 0.000 0.002 0.025 

Fold 2 0.000 -0.002 0.000 0.000 0.207 0.000 0.131 0.018 

Fold 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 

Fold 4 0.000 0.007 0.000 0.000 0.000 0.000 0.014 0.002 

Fold 5 0.000 0.000 0.000 0.226 0.000 0.027 0.019 0.013 

Avg 0.000 0.001 0.000 0.081 0.041 0.005 0.033 0.015 
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Appendix D 

Features used by unsupervised models ordered by Gini-importance and categorized as dictated 

by the methodology.  

Feature Gini STD Feature Gini STD 

Content Semantic   

High-Scoring Similarity 2.16% 0.36% Proper Noun Count 1.39% 0.15% 

Medium-Scoring Similarity 1.73% 0.30% References to Numbers 1.32% 0.11% 

Low-Scoring Similarity 1.67% 0.12% Redacted NER Count 1.24% 0.26% 

Polarity 1.53% 0.16% Ref. to Unrecognized Pronouns 1.08% 0.14% 

Subjectivity 1.43% 0.12% Interjection Count 0.97% 0.10% 

Grammatical No. Questions 0.79% 0.08% 

No. Corrections 1.66% 0.11% No. Exclamations 0.77% 0.09% 

Semantic References to Locations 0.69% 0.10% 

Non-Stop Word Count 3.06% 2.02% References to Persons 0.63% 0.11% 

Unique Word Count 3.03% 1.83% References to Organizations 0.51% 0.06% 

Character Count 2.86% 1.53% References to Dates 0.47% 0.10% 

Word Count 2.73% 1.51% References to Percentages 0.46% 0.23% 

Difficult Word Count 2.55% 1.33% References to Time 0.18% 0.06% 

Determinative Count 2.36% 1.24% References to Money 0.12% 0.03% 

Common POS Count 2.36% 1.17% Synthetic   

Action Word Count 2.31% 1.29% Unique POS-POS Ratio 2.82% 1.87% 

Sentence Count 2.21% 0.77% Coleman Lieu Score 2.34% 0.38% 

Noun Count 2.14% 0.84% Unique Character-Character Ratio 1.80% 0.58% 

Adverb Count 1.96% 0.77% Smog Score 1.75% 0.62% 

Adjective Count 1.95% 0.98% Word-Sentence Ratio 1.74% 0.26% 

Punctuation Count 1.90% 1.49% Unique Token-Token Ratio 1.70% 0.80% 

Pronoun Count 1.85% 0.64% Word-Character Ratio 1.69% 0.24% 

Conjunction Count 1.70% 0.74% Word-Difficult Word Ratio 1.64% 0.24% 

Unique Character Count 1.68% 0.64% Action Word-Word Ratio 1.58% 0.21% 

Verb Count 1.64% 0.78% Readability Score 1.43% 0.15% 

Preposition Count 1.63% 0.35% Flesch Score 1.42% 0.12% 

Unique NER Count 1.63% 0.31% Dale Chall Score 1.38% 0.13% 

Period Placement 1.63% 0.57% Kincaid Score 1.38% 0.13% 

No. Quotations 1.51% 0.41% Linsear Score 1.29% 0.11% 

Comma Placement 1.47% 0.29% Unique NER-NER Ratio 1.29% 0.35% 

Unique POS Tag Count 1.44% 0.18% Redacted-Unredacted NER Ratio 1.28% 0.23% 

NER Count 1.43% 0.30% Gunning Fog Score 1.27% 0.16% 

Unredacted NER Count 1.43% 0.46% Sentence-NER Ratio 1.21% 0.12% 
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