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Abstract

Due to their linguistic and analytical perfor-
mance, LLMs have attracted attention outside
the NLP community and in recent months many
real-world uses of language models have been
implemented, despite our incomplete under-
standing of their intent, capabilities and inher-
ent limitations. I explore work across quali-
tative studies of LLMs proposed by cognitive
psychologists to empirical NLP experiments of
reasoning to explain limitations with current
benchmarks’ ability to measure intelligence. I
argue reasoning evaluation must separate gen-
eration ability from logical ability by drawing
a parallel between widely accepted theories in
NLP and cognitive psychology, including sepa-
ration of form vs. meaning (Bender and Koller,
2020), formal vs. functional competence (Ma-
howald et al., 2023) and fluid vs. crystallized
intelligence (Cattell, 1963). Informed by these
theories, I propose a set of recommendations
for the measuring rigidly defined theories of
intelligence in LLMs which still allow valuable
quantitative system comparisons.

1 Introduction

Catastrophic risks in accountability, fairness and
bias exist in both overestimating (Bender et al.,
2021) and underestimating (Bowman, 2022) the
capability of large language models (LLMs). One
such capability which has become central to claims
of intelligence is analogical reasoning – mapping
previous experiences to solve a novel problem.
Claims of analogical reasoning are difficult to make
without a robust definition, evaluation scheme and
analysis to build upon (Mitchell and Krakauer,
2023). While orthogonal work in commonsense
reasoning is a well explored topic in NLP (§4), this
line of work has no grounding to support theories
of general intelligence proposed in the most recent
iteration of LLMs (Bubeck et al., 2023). To tie
claims of intelligence to work in cognitive psychol-
ogy, we can first look towards the foundational Tur-

ing (1950), a valuable thought experiment for the
prerequisites (and debating the possibility) of ma-
chine intelligence, yet this work falls short of allow-
ing a machine that ‘passes’ the Turing test to claim
human-like intelligence (Moor, 1976). In fact, a
separate line of arguments (e.g., Searle, 1980) have
attempted to disprove human-like intelligence can
be replicated through showing a human-like ma-
chine presents a logical contradiction. While this
debate argues whether such ‘thinking’ machine is
theoretically possible, recent attention to advances
in LLMs highlight a growing need define rigid mea-
surements of intelligence beyond thought experi-
ments. Therefore, I explore how work understand-
ing human thought supports claims about modeling
language. I show how existing theories of concep-
tual representation can help shape our evaluation
of LLMs, and highlight the inadequacy of the dom-
inant NLP benchmarks for claims of high-level
reasoning or expertise. I argue these theories of
intelligence offer a robust framework for designing
reasoning evaluation, and can re-shape experimen-
tation in the age of LLMs.1

In this work, I begin by evaluating the state of
analogical reasoning evaluation in NLP, highlight-
ing a mismatch between current evaluation and the
definition of reasoning in cognitive science. Then,
I make an argument that reasoning evaluation must
be independent from the capacity to generate fluent
language by exploring three well-accepted perspec-
tives in NLP and cognitive science. Finally, I build
upon my findings to propose recommendations for
future analogical reasoning evaluation.

1In this work, I focus on the GPT family of ‘LLMs’ (Rad-
ford et al., 2018), which are based on the decoder half of the
Transformer architecture (Vaswani et al., 2017). At their core,
LLMs are trained using a self-supervised objective on billions
of tokens (typically web text, e.g. C4) (Raffel et al., 2020) to
model the next word in a sequence given some set of previ-
ous context words. LLMs are quite successful on this simple
objective, and recent work has shown scaling a GPT model
leads to syntactically coherent and semantically meaningful
outputs (Brown et al., 2020).



2 Current Evaluation Techniques

Early work in analogical problem solving argued
reasoning can be interpreted as a heuristic search
through some problem space, with large, less struc-
tured spaces representing increasingly complex
problems (McCorduck and Cfe, 2004). Early artifi-
cial intelligence accepted that computing an entire
search space is either intractable, or too cumber-
some to estimate (Newell and Simon, 1975), and
instead developed informed search techniques to
guide the space exploration. Early tasks such as
chess (Chase and Simon, 1973) or Go (Silver et al.,
2016) operate over bounded search spaces, and
these bounded search spaces have shown to be a
helpful litmus tests for arguing a working memory
in LLMs (e.g., Noever et al., 2020 for chess). How-
ever, reasoning in the wild requires developing an
underlying representation of logic, and the capabil-
ity to apply logic to novel, infinite, ill-structured
and partially observable search spaces. In this sec-
tion, we begin by exploring how current bench-
marks in NLP capture this notion of analogical
reasoning, highlighting the inadequacy of the cur-
rent evaluation apparatus. Then, we discuss a re-
cent article directly applying cognitive psychology
benchmarks to GPT-3 and explain limitations of
current work exploring analogical reasoning.

2.1 Reasoning Benchmarks

Reasoning itself is an entire sub-field in NLP,
and as models become increasingly more fluent,
the goalposts for reasoning have shifted quickly.
SQUAD (Rajpurkar et al., 2016) sparked natural
language ‘understanding’ as a task, introducing a
dataset of 100K crowd-sourced questions about
Wikipedia articles. Since then, reasoning has splin-
tered into a vast number of highly specialized tasks,
broadly covering natural language inference, ques-
tion answering, commonsense reasoning and log-
ical reasoning (Yu et al., 2023). While inference
typically involves evaluating entailment and com-
monsense / QA rely on incorporating world knowl-
edge, logical reasoning is the closest parallel to ana-
logical reasoning. However, most logical datasets
are artificial, such as the 200k LOGICINFERENCE

(Ontanon et al., 2022) and are typically either easy
or entirely trivial tasks for humans (see examples
in Table 1), making them unsuitable benchmarks
for human-like intelligence. A separate line of
work adapts questions from standardized tests such
as the LSAT (Wang et al., 2022) or the Chinese

Civil Servant Exam (Liu et al., 2020), with the
idea that little domain knowledge is required, yet
these are challenging benchmarks even to humans.
However, such examples are nowhere near as con-
trolled as those which do not heabily rely on lan-
guage such as Raven’s matrices (see Table 2 in
§2.2) and are often synthetically generated. The
latter is not an issue when system performance is
easy to disambiguate, but recent work has shown
reasoning benchmarks may produce different or-
derings of system quality as models approach hu-
man performance (Li et al., 2022). Additionally,
as reasoning itself is a broad term in NLP eval-
uation, attempts to create multi-task benchmarks
to argue for reasoning have surged in popularity,
such as the GLUE (Wang et al., 2018) and Beyond
the Imitation Game (BIG) (Srivastava et al., 2022)
benchmarks. In BIG-BENCH, logical reasoning is
the second most common task with 58 sub-tasks
including identifying logical fallacies, proof veri-
fication and even parsing Pig Latin. To make an
argument towards reasoning, papers introducing
LLMs simply report a combined performance on
logical reasoning BIG-BENCH tasks (Chowdhery
et al., 2022; Rae et al., 2021). Current claims of rea-
soning intelligence in GPT-4 side step the question
of logical ability entirely. While OpenAI (2023)
reports performance on common NLP benchmarks,
they also admit to (and report) data contamination,
making the stability of their results questionable.
In fact, Bubeck et al. (2023) lacks any discussion
of analogical or commonsense reasoning, opting
instead to benchmark intelligence through GPT-4’s
ability to answer questions, write code or solve
math problems. Judging current evaluation by the
criteria in §2.3, current NLP benchmarks fail to
meet the prerequisites needed for a proper claim
towards logical ability, leading to patchwork claims
based on likely over-fit data or tasks which conflate
linguistic and functional competence.

2.2 Raven’s Progressive Matrices

A study of analogical reasoning, Webb et al. (2022)
apply well-known cognitive psychology tasks —
chiefly Raven’s progressive matrices (Raven and
Court, 1998) — to GPT-3, the first such application
of cognitive psychology benchmarks to an LLM.
They adapt 5 tasks from cognitive science literature:
(i) a text-based version of matrix reasoning, (ii)
letter-string analogies based on Mitchell and Hofs-
tadter (1990), (iii) four-term verbal analogies taken



Dataset Family Task Example

Entailment (2006) Language
Inference

Textual Entailment Sentence 1: Musk decided to offer up his personal Tesla roadster.
Sentence 2: Musk decided to offer up his personal car.
Answers: Entailment, Neutral, Contradiction

COPA (2011) Language
Inference

Cause-and-Effect
Reasoning

Question: Which event caused the other?
Answers: (A) It started raining. (B) The driver turned the wipers on.

SQuAD (2016) QA First-order Question
Answering

Passage: ... In meteorology, precipitation is any product of the condensation of atmospheric
water vapor that falls under gravity ...
Question: What causes precipitation to fall?
Answer: Gravity

ROCStories (2016) Commonsense
Reasoning

Temporal Reasoning Passage: Karen was assigned a roommate her first year of college. Her roommate asked her to
go to a nearby city for a concert. Karen agreed happily. The show was absolutely exhilarating.
Ending: Karen became good friends with her roommate.

HotpotQA (2018) QA Second-order Question
Answering

Passage A: The 2015 Diamond Head Classic was a college basketball tournament ... Buddy
Hield was named the tournament’s MVP.
Passage B: Chavano Rainier ”Buddy” Hield is a Bahamian professional basketball player for the
Sacramento Kings of the NBA ...
Question: Which team does the player named 2015 Diamond Head Classic’s MVP play for?

ARC (2018a) Language
Inference

Reasoning w/ Domain
Knowledge

Question: Which property of a mineral can be determined just by looking at it?
Answers: (A) luster (B) mass (C) weight (D) hardness

ART (2019) Language
Inference

Abductive Reasoning Observation 1: Jane was a professor teaching piano to students.
Observation 2: Jane spent the morning sipping coffee and reading a book.
(A) Two of Jane’s students were early for their lessons.
(B) None of Jane’s students had a lesson that day.

HellaSwag (2019) Commonsense
Reasoning

Temporal Reasoning Prompt: A woman is outside with a bucket and a dog. The dog is running around trying to avoid
a bath. She ...
(A) rinses the bucket off with soap and blow dry the dog’s head.
(B) uses a hose to keep it from getting soapy.
(C) gets the dog wet, then it runs away again.
(D) gets into a bath tub with the dog.

FOLIO (2022) Language
Inference

Deductive Reasoning Prompt: On a shelf, there are five books: a red book, a green book, a blue book, an orange book,
and a yellow book. The green book is to the left of the yellow book. The yellow book is the
third from the left. The red book is the second from the left. The blue book is the rightmost.
(A) The red book is the third from the left.
(B) The green book is the third from the left.
(C) The blue book is the third from the left.
(D) The orange book is the third from the left.
(E) The yellow book is the third from the left.

Table 1: Notable NLP reasoning tasks, with answers when applicable, highlighting the increasing complexity and diversity of
reasoning within benchmarks, yet an existing gap between current evaluation and complex tasks such as that demonstrated in
Table 2. See Yu et al. (2023) for an exhaustive review.

from the UCLA Verbal Analogy Test and Sternberg
and Nigro (1980), (iv) story analogies taken from
Gentner and Markman (1997) (testing both near
analogies, where entities and domain are shared,
and far analogies, where only relations between en-
tites are shared) and (v) analogical problem solving
(via the famous Ducker’s radiation problem). Ex-
amples of each task are included in Table 1. Tasks
i, ii and iii can be thought of as structured analogi-
cal problems. For example, letter-string analogies
(task ii) are simply a re-representation task, which
rely on synthetic relations between terms. In fact,
verbal analogies (task iii) have long been a high-
performant task for NLP models built on latent
representations (see Drozd et al., 2016), and may
play into the strength of the self-attention mecha-
nism hard-coding word relationships. While these
experiments are more controlled and are useful in
arguing linguistic competence, tasks iv and v are
more useful in arguing general reasoning ability.
These ill-structured problems require LLMs to both
parse language into logic and communicate the so-

lution to replicate human performance. In fact,
they found GPT-3 replicated the finding of Gick
and Holyoak (1980): it could only solve the radia-
tion problem after being presented with the castle
& invasion problem first.

Unlike traditional NLP experiments, their largest
test set size is 60 examples, orders of magnitude
smaller than even early reasoning benchmarks
like ARC (Clark et al., 2018b) with 7K exam-
ples. Additionally, the human baselines were pre-
sented similar to cognitive psychology experiments,
with careful selection and control of participants,
which led to much more stable results than could
be achieved by crowd-sourcing (Karpinska et al.,
2021). This paradigm of smaller, expensive and
highly-controlled testing is a helpful blueprint for
testing complex abilities. While staple abilities in
NLP like multi-hop QA or translation are directly
observable, reasoning is difficult to capture (or even
separate from the ability to generate language, see
§3) and future LLM evaluation can benefit by ap-
proaching LLMs similar to human subjects. This



work has shown a high quality experimental setup
makes a more grounded claim towards reasoning
than a large, but synthetically generated or crowd-
sourced dataset, a departure from the primary eval-
uation paradigm in NLP.

2.3 Limitations of Current Benchmarks

Considering the current state of evaluation, we iden-
tify three overarching limitations to constructing a
rigorous claim of reasoning ability in LLMs:
Loosely defined reasoning. Current work does
not attempt to separate the mechanisms used in
analogical reasoning. Bommasani et al. (2021) or-
ganizes this reasoning ability into three processes:
(1) universality, a latent, domain-independent rea-
soning ability, (2) grounding, the ability to convert
a novel problem into a set of universal logical sym-
bols, (such as those discussed in Larkin and Simon,
1987) and (3) generativity, the ability to convert
symbolic representations back into language. With
this interpretation, a model of analogical reasoning
requires grounding to convert a problem to its un-
derlying logical structure, universality to process
the logical problem and generativity to map the so-
lution back to the original problem space. Current
studies have yet to isolate these abilities, and such
a study could highlight a specific design limitation.

Data contamination and task complexity. While
extensive research has explored complex, inten-
tional human reasoning (Miller et al., 1960), higher-
level problem solving in LLMs has yet to be thor-
oughly understood (e.g., proving theorems, build-
ing complex software). Such an experiment would
be incredibly costly to explore, as it would require
building a unique symbol system alien to the train-
ing data of an LLM (e.g., a novel dataset of mathe-
matical theorems). Existing tests for complex rea-
soning can be used, but as researchers have no way
of searching LLM training data, no clear methodol-
ogy exists to ensure they have not trained on reason-
ing tests. Additionally, analogical ability is thought
to be a unique by-product of scaling model size, so
training a custom, smaller model is an infeasible
solution. Current work simply admits some data
contamination exists (including Webb et al., 2022),
but either restricted training data or cleverly engi-
neered test data is needed to prevent contamination.

Unregulated language exposure. Following ex-
tensive work arguing syntactic generalization in

Task Example

i Text-based
Raven’s Progres-
sive Matrices

[ 3 ] [ 5 ] [ 7 ]
[ 1 ] [ 3 ] [ 5 ]
[ 5 ] [ 7 ] [ 1 ]

[ _ 7 ] [ _ 7 4 _ ] [ 4 _ ]
[ 9 7 ] [ 9 7 4 8 ] [ 4 8 ]
[ 9 _ ] [ 9 _ _ 8 ] [ _ 8 ]

ii Letter-string
Analogy

accept : approve :: comfortable : ?
unhappy, upset, pleasant, disappointed
touch : robust :: colossal : ?
minimum, diminutive, petite, gargantuan

iii Four-term Verbal
Analogy

a b c → a b c
cool cool warm → cool cool warm
b c d e → a c d e
a d c b e → a b c d e
a b c d → a b c e
i i j j k k l l → i i j j k k m m

iv Story Analogy Source story presented with near / far analogies

v Analogical
Problem Solving

Ducker’s Radiation Problem, presented with rele-
vant or distractor stories

Table 2: Examples of tasks used in Webb et al. (2022).

LLMs, reasoning evaluation can benefit from a
controlled training setup. For example, to pro-
pose a fair comparison between LLMs and humans,
Yedetore et al. (2023) rely on the Poverty of the
Stimulus Argument (Chomsky et al., 2011), which
highlights that children do not receive enough lin-
guistic information to learn every grammar rule,
yet they demonstrate syntactic generalizations, and
thus implicitly learn grammar through mere expo-
sure to language. In contrast, syntactic ability in
LLMs may be a bi-product of the sheer amount of
different parse trees encountered in training, rather
than robust human-like syntactic generalization. In
their work, Yedetore et al. (2023) trained a small
language model on a similar number of tokens and
distribution of topics as a child would likely be
exposed to in different stages of development. If a
model design could learn syntactic generalizations
similar to a child, then it would demonstrate sim-
ilar performance on these tasks. Their evaluation
setup created a test set of familiar parse trees with
semantically unlikely words and performed basic
linguistic tests on subject-verb agreement, filler-
gap dependencies, and anaphora resolution. The
LLM with child-like language data either outper-
formed or matched human baselines with a similar
language exposure. While the study only claims
LLM designs are capable of syntactic generaliza-
tion, they demonstrate arguments for human-like
ability can be made by modeling human-like lan-
guage acquisition. As claims of human ability rely
on demonstrating a model can generalize, tests of
intelligence must be careful about placing strict
constrains on the training setup.



3 Evaluating Reasoning, Not Generation

In this section, we discuss three widely accepted
theories about the separation between linguistic
and analytical ability, and argue evaluation must
distinguish between these abilities.
Form and Meaning. In their seminal work, Bender
and Koller (2020) argue form, the realization of lan-
guage, is independent from meaning, the relation
of form to anything external to language. Using
this framework, they show meaning is grounded
by communicative intent, the real-world goal in-
habited by both speakers. While form is governed
by syntactic rules and shows whether one utter-
ance is more likely than another, communicative
intent and meaning give context to an utterance and
allow speakers to relate it to conceptual represen-
tations. Under this interpretation, the participation
of the listener is crucial to assigning meaning to
language, and as LLMs are only given training data
with form, this is not a rich enough signal to learn
meaning. They draw parallels between their argu-
ments and the Chinese Room Though Experiment
(Searle, 1980), pointing out that a speaker translat-
ing Chinese cannot learn the meaning of Chinese
words by looking at a dictionary alone. Their mean-
ing is connected to the physical, social and mental
models represented by the language. While some
have debated their assumption that real-world refer-
ences are required for meaning (such as Piantasodi
and Hill (2022), which argues meaning is captured
by ‘the way concepts relate to each other’), their
framework is useful in pointing out that in-depth
analyses of LMs often conflate competence in form
with competence in meaning. While the two are of-
ten correlated, robust evaluation of reasoning must
accept no causality exists between better linguistic
and reasoning capabilities.
Formal and Functional Competence. Mahowald
et al. (2023) recently proposed a separation of an-
alyzing GPT-3.5’s ability into formal competence,
knowledge of syntactic rules, and functional com-
petence, knowledge of language use, with both
abilities being independent of each other. Their
argument draws inspiration from fMRI brain scans
taken during reasoning tasks, which show separate
activation areas for language, memory, reasoning
and social skills (Fedorenko and Varley, 2016). As
language draws on the frontal and temporal lobes,
this implies human comprehension of language and
production of thought are two separate mechanisms.
This is further supported by experiments of indi-

viduals with aphasia, particularly global aphasia,
which impacts the comprehension and production
of language. Despite lacking all linguistic abil-
ity, these individuals can solve logic puzzles, play
chess and perform well on cause-and-effect reason-
ing tasks (Lecours and Joanette, 1980; Klessinger
et al., 2007). The authors then show the hierar-
chical structure of human language is modeled in
LLMs, as evidenced by mastery of non-local fea-
tures in English. In particular, Futrell et al. (2019)
treat an LSTM model similar to a human subject in
a psycholinguistic study and demonstrate internal
representations exist for a diverse set of complex
syntactic structures and Hewitt and Manning (2019)
use a probing strategy to show the distance between
individual word representations in BERT reflects
hierarchical sentence structure. Although this work
shows human-like syntactic generalizations may be
encoded in LLMs, evidence for human-like reason-
ing behavior is still disputed (Rogers et al., 2021)
and experimental setups similar to syntactic prob-
ing have yet to be designed for reasoning. However,
Mahowald et al. (2023) highlights that just as we
use tools in linguistics to evaluate formal compe-
tence, we can use tools in cognitive psychology to
evaluate functional competence.

Fluid and Crystallized Intelligence. Unlike the
previous two dichotomies, Cattel’s theory has been
a foundational building block of cognitive science:
crystallized intelligence is semantic knowledge
from past experiences, and fluid intelligence is the
ability to navigate novel situations (Cattell, 1963).
This was later incorporated into Baddeley’s model
of working memory (Baddeley, 1992, 2000), where
language and visual processing are crystallized ca-
pabilities and attention, processing (such as the
phonological loop) and temporary storage are fluid
capabilities. Under this interpretation, long-term
semantic knowledge is an entirely separate sys-
tem from logical reasoning and are supported by
Baddely’s experiments (e.g., Baddeley et al., 1975,
1988) Using Baddely’s model of working mem-
ory as a blueprint, McClelland et al. (2020) argue
modular design is necessary for fluid intelligence
in LLMs (echoing real-world multi-modal model
designs like Radford et al., 2021). Although mod-
ular design may seem beneficial to evaluation —
evaluating reasoning would thus entail isolating the
part of the model designed after working memory
— model designs which separate logical processing
from language or visual processing remain unstable



to train, and have subpar ability in practice (Elsner
and Shain, 2017). In fact, the strength of the self-
attention architecture lies in that it did not make
assumptions about the linearity of language previ-
ously made by the LSTM and RNN architectures
(Vaswani et al., 2017). However, this does not rule
out the possibility that a similar mechanism to Bad-
dely’s working memory is being implicitly learned,
and such a dichotomy is useful for designing a well
controlled experimental setup.

I have discussed the separation of form and
meaning as a means of placing an upper bound
on referenceless language learning, the separation
of formal and functional competence as an evalua-
tion tool and the separation of fluid and crystallized
intelligence as a cognitive theory of intelligence, as
well as their implications for evaluating reasoning.
The evidence for these theories is diverse: One is
supported by logical argument, one by studies of
brain imaging and the last by empirical studies of
human behavior. Despite their separate goals, these
theories establish a common thread: the capacity to
generate language is decoupled from that required
to reason with language. In the following section, I
show how these theories can build better reasoning
evaluation.

4 Building Stronger Reasoning
Evaluation

Learning from NLP reasoning benchmarks, analog-
ical thinking in cognitive science and arguments
of separation between language and reasoning, I
propose a set of recommendations for reasoning
evaluation in LLMs:
Clearly scale complexity. Although the dominant
paradigm in NLP is to produce a single test set
for an ability and interpret a model’s performance
across all examples equally, cognitive science sets
clear boundaries on the difficulty of experiments.
For example, Raven and Court (1938) uses vary-
ing difficulty levels for the types of matrices they
produce, and can show a relationship between task
difficulty and ability. Such a relationship would
further improve the interpretability and stability of
a benchmark, and would allow iterations on the
same test set. Additionally, task complexity can
scale to far more difficult domains, modeling high-
level expert decision making like that studied by
Ericsson (2009); Chi et al. (2014).
Test the same task across modalities. As Webb
et al. (2022) demonstrate Raven’s matrices can be

re-formulated as a text-only problem, many analog-
ical reasoning studies are free from the context of
a specific modality. If the same underlying logical
task is produced in many modalities (text and vi-
sion are the obvious choices, but arithmetic, sound
and spatial reasoning are reasonable candidates
as well), perhaps this can isolate the performance
of an underlying reasoning mechanism (or argue
against its existence). Regardless of whether model
design becomes modular, multi-modal setups of the
same task can isolate the performance of a learned
logical mechanism, and can be used to argue for
the utility of different modalities’ training data on
teaching reasoning ability.

Careful use of multi-task benchmarks. As dis-
cussed in §2.1, current multi-task benchmarks are
reported under the umbrella of ‘logical reasoning’
to make claims without a grounded definition of
reasoning. In fact, many of the tasks in these bench-
marks can easily be gamed with a system demon-
strating linguistic competence or world knowledge,
rather than one which has a robust reasoning ability.
While multi-task benchmarks are critical in organiz-
ing NLP datasets and allowing research to compare
systems across a vast number of benchmarks simul-
taneously, they are not (nor claim to be) a stand-in
for exhaustive analysis. The current misalignment
between experimental designs and definitions of
reasoning show current multi-task benchmarks can-
not be used to make claims towards the kind of
analogical reasoning as it is broadly understood in
cognitive science, but as future work will quickly
develop a suite of complex reasoning tasks, such
a multi-task benchmark is still an opportunity to
combine a vast number of different reasoning tests
into one measure.

Balance generation & classification. While Webb
et al. (2022) demonstrate a strong analysis with pri-
marily classification tasks, a much deeper analysis
can be made by testing the ability of open-ended
generation. This may take the form of testing spa-
tial reasoning – such as asking which direction a
gear will spin in a line of 10 gears (Schwartz and
Black, 1996) – or temporal reasoning – such as
providing multiple video segments and asking the
model what may happen next (Zellers et al., 2022).
Classification clearly offers more stable results, yet
generation could provide researchers with a richer
insight into model decisions. Being careful to avoid
anthropomorphizing model outputs, evaluating via
generation could create richer benchmarks, rec-



ognizing a trade-off exists between stability and
insight.

5 Conclusion

As I have shown, reasoning is not a monolithic
goal, but an amorphous and multi-faced ability far
more complex than is captured in its current state in
NLP. By exploring the limitations of current work,
as well as the richer body of knowledge about rea-
soning in cognitive science, I propose recommen-
dations for the design and evaluation of reasoning.
I posit that theories about separating syntax and se-
mantics may translate to separating reasoning from
language ability and argue this may be an effective
assumption to shape evaluation work. As empha-
sis grows on logical capability, and LLM authors
continue to make stronger claims of human-like
intelligence, the NLP community has received a
unique responsibility to contextualize these claims
in the broader context of human cognition.

References
Alan Baddeley. 1992. Working memory. Science,

255(5044):556–559.

Alan Baddeley. 2000. The episodic buffer: a new com-
ponent of working memory? Trends in cognitive
sciences, 4(11):417–423.

Alan Baddeley, Costanza Papagno, and Giuseppe Val-
lar. 1988. When long-term learning depends on
short-term storage. Journal of memory and language,
27(5):586–595.

Alan D Baddeley, Neil Thomson, and Mary Buchanan.
1975. Word length and the structure of short-term
memory. Journal of verbal learning and verbal be-
havior, 14(6):575–589.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM confer-
ence on fairness, accountability, and transparency,
pages 610–623.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Scott Wen-tau Yih, and
Yejin Choi. 2019. Abductive commonsense reason-
ing. arXiv preprint arXiv:1908.05739.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Samuel Bowman. 2022. The dangers of underclaim-
ing: Reasons for caution when reporting how NLP
systems fail. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7484–7499, Dublin,
Ireland. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Raymond B Cattell. 1963. Theory of fluid and crystal-
lized intelligence: A critical experiment. Journal of
educational psychology, 54(1):1.

William G Chase and Herbert A Simon. 1973. Percep-
tion in chess. Cognitive psychology, 4(1):55–81.

Michelene TH Chi, Robert Glaser, and Marshall J Farr.
2014. The nature of expertise. Psychology Press.

N Chomsky, RC Berwick, P Pietroski, and B Yankama.
2011. Poverty of the stimulus revisited. Cognitive
Science: A Multidisciplinary Journal, 35(7):1207–
1242.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018a. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018b. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment: First

https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2022.acl-long.516
https://doi.org/10.18653/v1/2022.acl-long.516
https://doi.org/10.18653/v1/2022.acl-long.516


PASCAL Machine Learning Challenges Workshop,
MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, pages 177–190. Springer.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and ma-
chine learning: Beyond king - man + woman = queen.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3519–3530, Osaka, Japan.
The COLING 2016 Organizing Committee.

Micha Elsner and Cory Shain. 2017. Speech segmenta-
tion with a neural encoder model of working memory.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1070–1080, Copenhagen, Denmark. Association for
Computational Linguistics.

K Anders Ericsson. 2009. Development of professional
expertise: Toward measurement of expert perfor-
mance and design of optimal learning environments.
Cambridge University Press.

Evelina Fedorenko and Rosemary Varley. 2016. Lan-
guage and thought are not the same thing: evidence
from neuroimaging and neurological patients. Annals
of the New York Academy of Sciences, 1369(1):132–
153.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 32–42, Minneapolis, Minnesota.
Association for Computational Linguistics.

Dedre Gentner and Arthur B Markman. 1997. Struc-
ture mapping in analogy and similarity. American
psychologist, 52(1):45.

Mary L Gick and Keith J Holyoak. 1980. Analogical
problem solving. Cognitive psychology, 12(3):306–
355.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, et al.
2022. Folio: Natural language reasoning with first-
order logic. arXiv preprint arXiv:2209.00840.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using Mechanical Turk to evalu-
ate open-ended text generation. In Proceedings of the

2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265–1285, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Nicolai Klessinger, Marcin Szczerbinski, and Rosemary
Varley. 2007. Algebra in a man with severe aphasia.
Neuropsychologia, 45(8):1642–1648.

Jill H Larkin and Herbert A Simon. 1987. Why a dia-
gram is (sometimes) worth ten thousand words. Cog-
nitive science, 11(1):65–100.

AndréRoch Lecours and Yves Joanette. 1980. Linguis-
tic and other psychological aspects of paroxysmal
aphasia. Brain and Language, 10(1):1–23.

Yitian Li, Jidong Tian, Wenqing Chen, Caoyun Fan, Hao
He, and Yaohui Jin. 2022. To what extent do natural
language understanding datasets correlate to logical
reasoning? a method for diagnosing logical reason-
ing. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1708–
1717, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A
challenge dataset for machine reading compre-
hension with logical reasoning. arXiv preprint
arXiv:2007.08124.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy
Kanwisher, Joshua B Tenenbaum, and Evelina Fe-
dorenko. 2023. Dissociating language and thought
in large language models: a cognitive perspective.
arXiv preprint arXiv:2301.06627.

James L. McClelland, Felix Hill, Maja Rudolph, Jason
Baldridge, and Hinrich Schütze. 2020. Placing lan-
guage in an integrated understanding system: Next
steps toward human-level performance in neural lan-
guage models. Proceedings of the National Academy
of Sciences, 117(42):25966–25974.

Pamela McCorduck and Cli Cfe. 2004. Machines
who think: A personal inquiry into the history and
prospects of artificial intelligence. CRC Press.

G.A. Miller, E. Galanter, and K.H. Pribram. 1960. Plans
and the Structure of Behavior. Martino Fine Books.

Melanie Mitchell and Douglas R Hofstadter. 1990. The
emergence of understanding in a computer model of
concepts and analogy-making. Physica D: Nonlinear
Phenomena, 42(1-3):322–334.

Melanie Mitchell and David C Krakauer. 2023. The de-
bate over understanding in ai’s large language models.
Proceedings of the National Academy of Sciences,
120(13):e2215907120.

James H Moor. 1976. An analysis of the turing test.
Philosophical Studies: An International Journal for
Philosophy in the Analytic Tradition, 30(4):249–257.

https://aclanthology.org/C16-1332
https://aclanthology.org/C16-1332
https://doi.org/10.18653/v1/D17-1112
https://doi.org/10.18653/v1/D17-1112
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2021.emnlp-main.97
https://doi.org/10.18653/v1/2021.emnlp-main.97
https://aclanthology.org/2022.coling-1.147
https://aclanthology.org/2022.coling-1.147
https://aclanthology.org/2022.coling-1.147
https://aclanthology.org/2022.coling-1.147
https://doi.org/10.1073/pnas.1910416117
https://doi.org/10.1073/pnas.1910416117
https://doi.org/10.1073/pnas.1910416117
https://doi.org/10.1073/pnas.1910416117
https://books.google.com/books?id=ZabJngEACAAJ
https://books.google.com/books?id=ZabJngEACAAJ


Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Allen Newell and Herbert A Simon. 1975. Computer
science as empirical inquiry: Symbols and search. In
ACM Turing award lectures, page 1975. ACM.

David Noever, Matt Ciolino, and Josh Kalin. 2020. The
chess transformer: Mastering play using generative
language models. arXiv preprint arXiv:2008.04057.

Santiago Ontanon, Joshua Ainslie, Vaclav Cvicek, and
Zachary Fisher. 2022. Logicinference: A new
datasaet for teaching logical inference to seq2seq
models. In ICLR2022 Workshop on the Elements of
Reasoning: Objects, Structure and Causality.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Steven T Piantasodi and Felix Hill. 2022. Meaning
without reference in large language models. arXiv
preprint arXiv:2208.02957.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAI.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

John C Raven and JH Court. 1938. Raven’s progres-
sive matrices. Western Psychological Services Los
Angeles.

John C Raven and John Hugh Court. 1998. Raven’s
progressive matrices and vocabulary scales. Oxford
Psychologists Press Oxford.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Daniel L Schwartz and John B Black. 1996. Analog im-
agery in mental model reasoning: Depictive models.
Cognitive Psychology, 30(2):154–219.

John R Searle. 1980. Minds, brains, and programs.
Behavioral and brain sciences, 3(3):417–424.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Robert J Sternberg and Georgia Nigro. 1980. Develop-
mental patterns in the solution of verbal analogies.
Child Development, pages 27–38.

Alan Mathison Turing. 1950. Mind. Mind,
59(236):433–460.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming
Zhou, Zhongyu Wei, Zhumin Chen, and Nan Duan.
2022. From lsat: The progress and challenges of com-
plex reasoning. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 30:2201–2216.

https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://openreview.net/forum?id=HAGeIS_Lcg9
https://openreview.net/forum?id=HAGeIS_Lcg9
https://openreview.net/forum?id=HAGeIS_Lcg9
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2022.
Emergent analogical reasoning in large language
models. arXiv preprint arXiv:2212.09196.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Aditya Yedetore, Tal Linzen, Robert Frank, and
R Thomas McCoy. 2023. How poor is the stimu-
lus? evaluating hierarchical generalization in neural
networks trained on child-directed speech. arXiv
preprint arXiv:2301.11462.

Fei Yu, Hongbo Zhang, and Benyou Wang. 2023. Na-
ture language reasoning, a survey. arXiv preprint
arXiv:2303.14725.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu,
Yanpeng Zhao, Mohammadreza Salehi, Aditya Kusu-
pati, Jack Hessel, Ali Farhadi, and Yejin Choi. 2022.
Merlot reserve: Neural script knowledge through
vision and language and sound. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16375–16387.

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

